Esempio 3
Sia assegnata una copertura minima di un insieme di d.f. \( \mathcal{F} \) e le chiavi candidate di \( R \) insieme al grafo delle dipendenze.
Determinare una decomposizione BCNF.
$$
\mathcal{F}_{min} =
\begin{pmatrix}
AB \rightarrow C \\
C \rightarrow D \\
F \rightarrow B \\
AC \rightarrow E \\
G \rightarrow H \\
D \rightarrow G \\
E \rightarrow AF \\
C \rightarrow F \\
H \rightarrow G
\end{pmatrix}
$$
$$ Keys(g) = \left\{ AB, E, AF, AC \right\} $$
$$ R(ABCDEFGH) $$
$$ \overbrace{
X = F \\
Y = F^{+} - F = B \\
Z = AECDGH
}
$$
$$ R_1(FB) $$
$$
F \rightarrow B$$
$$ R_2(FAECDGH) $$
$$ \begin{align}
AF \rightarrow C \\
AC \rightarrow E \\
E \rightarrow AF \\
C \rightarrow D \\
H \rightarrow G\\
G \rightarrow H \\
C \rightarrow F
\end{align} $$
$$ R_2(FAECDGH) $$
$$ \overbrace{
X = D \\
Y = D^{+} - D = GH \\
Z = AECF
}
$$
$$ R_3(DAECF) $$
$$ \begin{align}
AF \rightarrow C \\
C \rightarrow D \\
AC \rightarrow E\\
E \rightarrow AF
\end{align} $$
$$ R_4(DGH) $$
$$ \begin{align}
D \rightarrow G \\
G \rightarrow H \\
H \rightarrow G
\end{align} $$
$$ R_3(DAECF) $$
$$ \overbrace{
X = C \\
Y = C^{+} - C = DF \\
Z = AE
}
$$
$$ R_5(CDF) $$
$$ C \rightarrow DF $$
$$ R_6(CAE) $$
$$ \begin{align}
AC \rightarrow E
\end{align} $$
$$ R_4(DGH) $$
$$ \overbrace{
X = G \\
Y = G^{+} - G = H \\
Z = D
}
$$
$$ R_7(GH) $$
$$ G \rightarrow H \\
H \rightarrow G $$
$$ R_8(GD) $$
$$ \begin{align}
D \rightarrow G
\end{align} $$
References
[1] - Jeffrey D. Ullman, Basi di dati e basi di conoscenza,
Gruppo Editoriale Jackson S.p.a, Milano 1991, pagg. 430-481
[2] - R. Ramakrishnan - J. Gehrke, Sistemi di basi di dati,
McGraw Hill, Milano 2004, pagg. 157-165, 175.